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Using fast-Fourier-transform techniques, we calculated several properties of a two-dimensional D-
wave superconductor directly from the phenomenological form of the magentic susceptibility suggested
by Millis, Monien, and Pines. A BCS-type formalism is employed, but no assumptions are made about
the exact form of the gap anisotropy. The results for the gap exhibit D-wave symmetry and go beyond
the usual cosine minus cosine model. The results obtained are compared with those obtained from the

simpler and much used separable model.

I. INTRODUCTION

The possibility that D-wave superconductivity exists in
the copper oxide superconductors was recognized early
on and remains an intriguing possibility that is the sub-
ject of considerable current activity, both theoretical and
experimental.! "!® Some aspects of the experimental evi-
dence for and against D-wave superconductivity has been
reviewed recently by Annett and Goldenfeld,! and some
aspects of the theory have been reviewed by Monthoux
and Pines.? On the theoretical side, early references in-
clude Bickers, Scalettar, and Scalapino® and others*™®
while some recent references include Monthoux, Balat-
sky, and Pines,” Monthoux and Pines,> Millis,> Wermbter
and Tewordt,’ Lenck and Carbotte,'® Nicol, Jiang, and
Carbotte,!! and many others.!?~ !’

An important theoretical issue is the problem of ob-
taining large values of the critical temperature for a D-
wave order parameter stabilized by exchange of antiferro-
magnetic spin fluctuations using realistic parameters.
Early arguments®!* were given that even for large cou-
pling to the antiferromagnetic spin fluctuations, only
modest values of the critical temperature could be ob-
tained because of large renormalization effects in the
normal-state channel. The models assumed that the mag-
netic susceptibility can be written as a product of a
separate function of energy and momentum and the
momentum dependence taken to be separable in final and
initial momenta and of a simple form consistent with D-
wave symmetry. However, using a more realistic but
phenomenological form for the susceptibility, which in-
cludes commensurate magnetic fluctuations with an in-
commensurate Fermi surface, Monthoux, Balatsky, and
Pines” !¢ have obtained much larger values of T,. Millis®
has also given some arguments in support of large values
of T. coming from more realistic models of antiferromag-
netic spin fluctuations. Similar conclusions are reached
in the work of Lenck and Carbotte'® who take a more
fundamental approach. They calculate the magnetic sus-
ceptibility self-consistently from microscopics in a simple
tight-binding band for a given value of Coulomb on-site
repulsion U. For some values of the parameters, they can
obtain values of 7, in the D-wave channel which are
comparable in size to those observed in the oxides. Al-
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though they need to make a simple ansatz for the
momentum dependence of their susceptibility at each
step in the iteration process, their calculations lend fur-
ther strong support to the possibility that high-T, super-
conductivity might be stabilized by antiferromagnetic
spin fluctuations.

Our primary concern in this paper will not be the cal-
culation of the value of T, from fundamental calcula-
tions. Instead, we will be interested in understanding the
expected behavior for various superconducting properties
resulting from a D-wave condensation in the CuO plane.
There already exists a significant literature on the proper-
ties of D-wave superconductors and the closely related p-
wave case.?’~2° Most calculations have involved a simple
BCS model with a separable interaction as well as a few
strong-coupling calculations along the same lines.

Little has been done specific to a tight-binding band in
a plane, however. Here we start with the phenomenolog-
ical susceptibility of Millis, Monien, and Pines which we
use as a pairing interaction in a BCS gap equation for the
anisotropic and temperature-dependent gap A(k,7T) as a
function of momentum in the first Brillouin zone (FBZ).
No assumption is made for the form of A(k), and a fast-
Fourier-transform technique yields a D-wave solution
with zeros along the lines cos(kxa)=cos(kya), but not
having the usual simplified cos( kxa)—cos(kya) form,
with a the lattice parameter. Two possible choices are
considered for the band structure, namely, nearest neigh-
bors only and a case with next-nearest neighbors. Also,
the chemical potential is varied close and away from the
Van Hove singularity. Solutions are compared with each
other and with the simpler separable case. Finally, re-
sults are given for the shifts in phonon energy and change
in width as the superconducting state is entered. The
temperature dependence of the magnetic-field penetration
depth is also calculated and again comparisons with
simpler models are offered.

II. MOMENTUM DEPENDENCE OF THE GAP

We start with the finite-temperature BCS equation in-
volving the magnetic susceptibility y(k—k’) as the pair-
ing interaction. The gap at any point k inside the first
Brillouin zone (BZ) is
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B ™ kl)tanh[E(k’)/ZkBT]A(k') W
A(k)—%‘, g2x( &) ,
where

E(k)=Ve(k)*+A(k)?, 2)

with e(k) the single-particle dispersion relation. For a
tight-binding band, we will take

e(k)=2f[cos(k,a)+cos(k,a)
—2B cos(k,a)cos(k,a)—(2—2B—f)], (3)

where a is the lattice parameter and 7 is the normalized
chemical potential with 7 the nearest-neighbor hopping-
matrix element and B7 the matrix element for next-
nearest-neighbor hopping. For B equal to zero, we have
the usual nearest-neighbor case with nesting at half filling
which corresponds to f=2. A value for B that may be
realistic for YBa,Cu;0; is 0.45 in comparison with local-
density-approximation (LDA) calculations.*

For the magnetic susceptibility, we will employ the
phenomenologically determined form by Millis, Monien,
and Pines (MMP), which in turn is based on NMR mea-
surements.!” It is (with v,, the mth Matsubara frequen-
cy)

1+£4q—Q)*—i

4x>0,9,>0,v,, >0

m)

Wsg
4)

with Q=(w/a,w/a) and the parameters Y(Q), the mag-
netic coherence length £, and the spin fluctuation fre-
quency wgr given by MMP. As we are using a BCS mod-
el with no retardation, the v,, =0 value of Eq. (4) is to
enter in the BCS equation (1), namely,

X (5)
1+£(g— Q)
which is the kernel with largest q variation as compared
with v,,70. Since we are not interested in making a mi-
croscopic calculation of T, this would require an Eliash-
berg formulation to be quantitative; the parameter g in (1)
is adjusted to get any desired value of T,.

We solve Eq. (1), which is completely defined, using a
fast-Fourier-transform technique to get T, and any solu-
tion below that temperature. We find that the converged
solution had D-wave symmetry with lines of zeros at
cos(k,a)=cos(k,a), but is of a more general form than
the lowest order

M =[cos(k,a)—cos(k,a)] (6)

used in many models. In Fig. 1 we show our results for
the gap as a function of momentum (k,,k,) in the first
Brillouin zone for k, and k, ranging from — to 7. Fig-
ure 1(a) applies in the case of the nearest-neighbor band.
The critical temperature is 98.6 K with 7=100 meV and
Z=1.9, which is near the Van Hove singularity. The
maximum gap at 7=0 was found to be 20.0 meV for a
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ratio 2A,,/kgT,=4.71, which is somewhat larger than
the ideal value of 4.3 when a separable 7, model is used
for the pairing interaction. This maximum happens to be
at (0,7), as it would in a separable model, but the data
significantly deviate from such a simple behavior. This is
made more clear in Fig. 1(b), which is applied to the same
band structure, but now Z=1.6 farther away from the
Van Hove singularity. The coupling strength g is adjust-
ed so that T, =99.6 K and A(k) exhibits two maxima on
the edge of the Brillouin zone displaced from (0,7). The
maximum value of A(k) for T=0 is 27.0 meV, while the
value of the gap at (0,7) is only 23.9 meV. This gives a
ratio of 2A,,,/kpT.=6.29, which is much greater than
the value 4.3 mentioned before. Finally, in Fig. 2, we
show similar results for a different band structure. Here
B =0.45, which is possibly appropriate to the case of
YBCO. Note here that the maximum gap does not fall at
(0,7), where 2A ,)/kp T, =4.27, but rather at some in-
termediate value of g, for g, =0 and 24, /ky T, =4.50.
It is clear that the gap variation can be quite different
from a simple 7,cos(k,a)—cos(k,a) model. It is clear
then that our fast-Fourier-transform technique has pro-
duced solutions with D-wave symmetry, i.e., with zeros

(m,m)

FIG. 1. Variation of the gap A(k) as a function of momen-
tum within the Brillouin zone obtained from our fast-Fourier-
transform solution of the gap equation (1). Frame (a) is for a
nearest-neighbor band with 7=100.0 meV, z=1.9, 7. =98.6 K,
and T=20.0 K. Frame (b) is for the same band with g=1.6,
T.=99.6 K, and T=20.0K.
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FIG. 2. Variation of the gap A(k) as a function of momen-
tum within the first Brillouin zone obtained from our fast-
Fourier-transform solution of the gap equation (1). The plot ap-
plies to a next-nearest-neighbor energy dispersion with B =0.45.
Here 7=100.0 meV, g=0.6, T.,=105.5 K, and T=20.0 K. In
this case, the maximum gap ratio 2A,,,/ksT.=4.51, while
2A(k =0,7)/ky T, =4.29.

along cos(k,a)=cos(k,a), but which are quite different
from the simple 1, =cos(k,a)—cos(k,a) model.

III. PHONON SHIFTS AND WIDTHS

Certain phonon modes in the high-T, oxides are seen
in Raman-scattering studies, and the shift in frequency
and change in width on entering the superconducting
state can be measured. A theory for this effect has been
put forward by Zeyher and Zwicknagl®! and used by ex-
perimentalists®>? to extract a gap value from the pattern
of behavior observed for the frequency dependence of the
shift and/or the widths. The work of Zeyher and Zwick-
nagl®! is based on an isotropic s-wave theory for the su-
perconducting state and uses a strong-coupling Eliash-
berg formalism on the imaginary Matsubara frequency
axis with a final analytic continuation of the phonon self-
energy to real frequencies so as to get the physical shift
and width. Marsiglio, Akis, and Carbotte’* later im-
proved the calculations by employing directly a real fre-
quency axis formulation which avoids some of the numer-
ical smearing of the results inherent in the Padé approxi-
mation used for the analytic continuation from imaginary
to real axis. More recently, Nicol and Carbotte have con-
sidered the phonon self-energy in a D-wave superconduc-
tor using a simple 7, =cos(k, a)—cos(k,a) ansatz for the
pairing potential within a BCS formalism. Here we will
recalculate this quantity using the results for the momen-
tum dependence of the gap given in the previous section.

The phonon self-energy due to the interaction with
phonons is given in the lowest approximation, neglecting
vertex corrections,!"3’ by

TNGiv,)=T 3 lgxrqul’
mk
Xtr{m;G (k+q,iw, tiv,)r3G(io,)} ,
(7)
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where G (k,iw,) is the matrix Green’s function in the
Nambu representation and takes on the form?®?

iw, 7ot e(k)T3+A(k)T,

Gk io,)= ,
@ (kP + Ak + ol

(8)

In these expressions, the 7’s are Pauli matrices and
iw, (iv,) is a fermion (boson) Matsubara frequency
given by i7T(2n —1)(im2m) with n(m) integral. Also,
8k+q,kx 18 the electron-phonon vertex for scattering of an
electren from k to k+q through emission or absorption
of a phonon of frequency w,(q), with A a branch index
which we will suppress from this point on. Also, we are
only interested in Raman scattering with q—0 and will
also suppress momentum dependence in (7). After some
algebra assuming a BCS superconductor with gap A(k)
given by our Eq. (1), the expression for the phonon self-
energy shift as we go from the normal to superconducting
state takes a simple form'"3*

2AX(k)
m(iv,)=—43 LA

ant | £
Y E(K)[2E(k)*++2]

2k, T

.9

In general, the k dependence of the electron-phonon cou-
pling will affect, somewhat, the behavior of w(iv,,).
Since it is not known, we will take it out assuming it to be
roughly constant and work with a quantity 7(iv,,) in
which g has been renormalized out. An analytical con-
tinuation to real frequencies iv,, —v+i0" then gives'3*
(for the difference with the normal state)

A%(k) 1
A_ =
=2 B wr | 2B +vri0”
1 E (k)
———— |tanh | —/—2% | .
2E(k)+v—i0™ an 2kpT
(10)

This last expression (10) can easily be evaluated numeri-
cally from our solutions of Eq. (1) at various tempera-
tures. In our numerical work, ;0" will be taken as a
finite constant related to the numerical precision of our
numerical grid. For the fast Fourier transform, we use a
grid of 252 points and ;0" ~i(2 meV).

Results are presented in Figs. 3(a) and 3(b) for the real
and imaginary parts of A7(v+i0") as a function of fre-
quency v for various values of reduced temperature,
namely, T=20.0 K (solid line), T=40.0 K (dotted line),
T=60.0 K (short-dashed line), 7=80.0 K (long-dashed
line), T=100.0 K (next long-dashed line), and 7=110.0
K (last long-dashed line). In this instance, T, =113.3 K
and the chemical potential Z=0.3, which is close to the
Van Hove singularity since we are using the next-
nearest-neighbor model. The first peak in the imaginary
part at about 45 meV falls near twice the maximum gap
value on the Fermi line. The other peak at higher energy
is a reflection of the Van Hove singularities. As the tem-
perature is increased, the gap structure, as expected,
moves to lower energies as does the structure from the
Van Hove singularities. These graphs are quite different
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from those found previously in the work of Nicol and
Carbotte. Some of the differences come from our use of
second-nearest-neighbor bands, and some are due to the
more complicated solution for the momentum depen-
dence of A(k), which is not a simple
M =cos(k,a)—cos(k,a). To  understand  these
differences a little better, we return to our simpler first-
nearest-neighbor band-structure model and show results
for the real and imaginary parts of Am(v) (solid curves) in
Fig. 4. In this case, T,=98.6 K and z=1.9. The max-
imum gap in the FBZ is 20.0 meV, while the maximum
gap on the Fermi line is 17.5 meV. Twice that value is

ReAll(v)

ImAII(v)

v [meV]

FIG. 3. Phonon self-energy Am(v) as a function of frequency
v for several values of temperature, namely, 20.0 K (solid line),
40.0 K (dotted line), 60.0 K (short-dashed line), 80.0 K (lower
long-dashed line), 100.0 K (next long-dashed line), and 110.0 K
(top long-dashed line). The calculations are for a second-
nearest-neighbor band with B=0.45, 7=100.0 meV, g=0.3
(near the Van Hove singularity), and T, =113.3 K. Frame (a) is
for the real part, frame (b) for the imaginary part.
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FIG. 4. Phonon self-energy Am(v) at T=20.0 K as a func-
tion of frequency v for a nearest-neighbor band with 7=100.0
meV, g=1.9 (near the Van Hove singularity), and T, =98.6 K.
The solid curves were obtained from our fast-Fourier-transform
solutions of the gap equation (1). The dotted curves are for
comparison and apply to a simple cos(k,a)—cos(k,a) model
with the maximum gap taken to be 17.5meV equal to the max-
imum value on the Fermi line obtained from our complete cal-
culations.

the frequency at which the imaginary part of Aw(v)
shows its first minimum. Generally, the pattern of
behavior in this graph is different from that of Fig. 3,
reflecting the different band structure and Fermi line. In
Fig. 4 the dashed lines are for a pure cos(k,a)—cos(K ,a)
model adjusted so that the frequency of the gap structure
coincides with that of the more complicated model. Even
when this adjustment is made, there remain some impor-
tant differences in detail among the two curves, although
the qualitative nature of the variations is fully captured
by the simplified model. A detailed comparison of such
curves with the existing experimental data can be found
in the recent work of Nicol, Jiang, and Carbotte.>

IV. PENETRATION DEPTH

In a bulk superconductor, an external magnetic field
can only penetrate a small surface region called the
penetration depth. From electrodynamics, the penetra-
tion tensor (2 X2, in our case) is related to the surface im-

pedance Z (o) by?"3¢
A= lim 22 (11)
0—0 iUy

with p, the permeability. The surface impedance can be
calculated from the electromagnetic-field response func-
tion K(q,®), which relates the current J(q,®) to the elec-
tromagnetic vector potential A(q,w) by 27,36

Ji(q,0)=K;(q,w)4;(q0) , (12)
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with i,j component indices. For specular reflection and
in the London limit ¢ —0,
~1,2

£ ) (13)

“2K,(0,0)

A= | =

and this can be worked out in the simplest approximation
to be3®37

2 dey ey

- 5 %& of(E(k)) 3f(e(k))
ij(T) < ak, akj

A 3E(K) de(k)

) (14)

where, for simplicity, we have dropped the label L for
London and have left out a proportionality constant
which will play no role as we will present results for the
normalized quantity

Axx(0) ]°

Ay (T)

as a function of reduced temperature (7/7,). In Eq.
(14), f(x) is the Fermi-Dirac distribution at 7. In Fig. 5
we show numerical results based on the solutions for
A(k) obtained in Sec. II. The solid curve is for the
nearest-neighbor model with g=1.9, while the long-
dashed curve is for the same band structure, but now
[ =1.6 farther away from the Van Hove singularity. We
see clearly that at low temperature both curves exhibit a
linear temperature dependence, but the curve with
L=1.6 exhibits a considerably smaller slope, so that a
shift in chemical potential through doping can be expect-

A0)/AMD)F

T/Te

FIG. 5. Temperature (T/T,) variation of the normalized
penetration depth ratio squared [A(0)/A(T)]?. The dotted
curve is [1—(T/T.)*] for comparison only. The solid and
long-dashed curves are for the nearest-neighbor band-structure
model with Z=1.9 and (near the Van Hove singularity) z=1.6,
respectively. The long-daéhed and dot-dashed curves are for the
next-nearest-neighbor band-structure model with Z=0.3 (near
the Van Hove singularity) and z=0.6. The open circles are
data on high-quality single-crystal YBa,Cu;0, by Hardy et al.
(Ref. 38).
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ed to change the overall shape of the penetration depth
curve, although the linear dependence at low temperature
remains. The short-dashed curve is for the next-nearest-
neighbor band with chemical potential 5 =0.3, while the
dot-dashed curve is for the same band structure but with
£ =0.6 farther away from the Van Hove singularity. It is
clear that band structure affects the value of the slope of
the linear law at low temperature. Also, the final dot-
dashed curve is seen to have moved a considerable way
toward the dotted curve, which is 1—¢2, shown for com-
parison. It is perhaps of interest to note that these curves
do not order according to the maximum gap to a T,
value 2A™* /kp T,, which are 4.71, 4.85, 6.29, and 4.51,
respectively, for the solid to dot-dashed curves. The situ-
ation is just more complex and shows that the tempera-
ture dependence of the London penetration depth can de-
pend on some of the details of the underlying band struc-
ture and superconducting state. The qualitative behavior
of these curves, however, is captured by the simpler se-
parable cos(k,a)—cos(k,a) model. In Fig. 5 we show
the recent experimental results of Hardy er al.® which
clearly show a linear variation at low temperature (open
circles). It is clear, however, that their results are quite
different from the present theoretical curves. As we have
seen already, changes in the band structure can change
the theoretical curves as can different choices of the basic
interaction given by (4). To illustrate this, we show in
Fig. 6 results when the antiferromagnetic coherence
length is changed. The solid curve has already been
presented and discussed in Fig. 5. It applies to the
nearest-neighbor hopping case and is for an antiferro-
magnetic coherence length £=2.5. Results for two addi-
tional runs in which & has been halved (long-dashed

(A (0)/N(T)

T/Te

FIG. 6. Normalized square of the inverse of the penetration
depth [A(0)/A(T)]? as a function of reduced temperature T /T,
for the nearest-neighbor band model with different values of
magnetic coherence length (§). The solid curve is as in Fig. 5
and is for comparison. The short-dashed curve was obtained
when £ was doubled and the long-dashed curve when it was
halved keeping the T, value unchanged.
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curve) and doubled (short-dashed curve) are also shown.
It is clear that the temperature variation of the penetra-
tion depth is significantly affected by the choice of mag-
netic coherence length entering the susceptibility. Should
this quantity be significantly temperature dependent, it
would be strongly reflected in the penetration depth
curves. It has been argued by Monthoux, Balatsky, and
Pines,’ from consideration of NMR data, that the value
of £ may be frozen in the superconducting state and so £
may not be significantly temperature dependent.

V. CONCLUSION

In conclusion, we have calculated the detailed momen-
tum variation of the superconducting energy gap for a
BCS superconductor directly from the phenomenological
magnetic susceptibility advanced by MMP on the basis of
an analysis of the NMR data in the high-T, oxide super-
conductors. We obtain from numerical solution of the
gap equation, using a fast-Fourier-transform technique, a
gap which exhibits D-wave symmetry, but is quite
different in detail from the often used cos(k,a)—cos(k,a)
dependence. For values of the critical temperature ap-
propriate to the oxides, we find that considerable
differences arise as the underlying band structure is
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modified from a nearest-neighbor model to the next-
nearest-neighbor case. Also, the position chosen for the
chemical potential i makes a difference.

From the solutions obtained, we calculate the real and
imaginary parts of the phonon self-energy difference be-
tween normal and superconducting states and find
significant changes with band-structure and chemical po-
tential values as well as some differences from previous
results based on a much simpler separable
cos(k,a)—cos(k,a) model. When the penetration depth
is considered, the temperature dependence of the reduced
ratio [A(0)/A(T)]? is found to be linear at low tempera-
ture but with a slope that can change significantly with
value of the chemical potential and band structure. The
differences found for the various curves considered were
not found to follow a simple pattern of classification.

ACKNOWLEDGMENTS

We would like to thank Fred Kus for his assistance
with the fast Fourier transform and its implementation.
This work was supported by a grant of the National Sci-
ences and Engineering Council of Canada (NSERC) and
by Canadian Institute for Advanced Research (CIAR).

13, F. Annett and N. Goldenfeld, J. Low Temp. Phys. 89, 197
(1992).

2p. Monthoux and D. Pines, Nuovo Cimento (to be published).

3N. E. Bickers, R. T. Scalettar, and D. J. Scalapino, Int. J. Mod.
Phys. B 1, 687 (1987).

4D. J. Scalapino, E. Loh, and J. E. Hirsch, Phys. Rev. B 34,
8190 (1986).

5N. E. Bickers, S. R. White, and D. J. Scalapino, Phys. Rev.
Lett. 62, 961 (1989).

6A. J. Mills, S. Sachdev, and C. M. Varma, Phys. Rev. B 37,
4975 (1988).

7P. Monthoux, A. V. Balatsky, and D. Pines, Phys. Rev. Lett.
67, 3448 (1991); Phys. Rev. B 46, 14 803 (1992).

8A.J. Millis, Phys. Rev. B 45, 13047 (1992).

9S. Wermbter and L. Tewordt, Phys. Rev. B 43, 10530 (1991).

10St. Lenck and J. P. Carbotte, Phys. Rev. B 46, 14 850 (1992).

11E, J. Nicol, C. Jiang, and J. P. Carbotte, Phys. Rev. B 47, 8131
(1993).

12H. Monien, P. Monthoux, and D. Pines, Phys. Rev. B 43, 275
(1991).

13p, Monthoux and D. Pines, Phys. Rev. Lett. 69, 961 (1992).

14C. M. Varma, in High-T, Superconductors, edited by Harald
W. Weber (Plenum, New York, 1988), p. 13.

15D, Pines, Physica C 185-189, 120 (1991).

16p, Monthoux and D. Pines, Phys. Rev. B 47, 6069 (1993).

17A. J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42, 167
(1990).

185, M. Anlage and D. H. Wu, J. Supercond. 5, 395 (1992).

19D, A. Bonn, P. Dosanjh, R. Liang, and W. H. Hardy, Phys.
Rev. Lett. 68, 2390 (1992).

20p, J. Hirschfeld, P. Wolfle, J. A. Sauls, D. Einzel, and W. O.
Putikka, Phys. Rev. B 40, 6695 (1989).

21w. O. Putikka, P. J. Hirschfeld, and P. W&lfle, Phys. Rev. B
41, 7285 (1990).

22p. J. Hirschfeld, D. Vollhardt, and P. Wdlfle, Solid State
Commun. 59, 111 (1986).

23H. Monien, K. Scharnberg, L. Tewordt, and D. Walker, Solid
State Commun. 61, 581 (1987).

24R. A. Klemm, K. Scharnberg, D. Walker, and C. J. Rieck, Z.
Phys. B 72, 139 (1988).

25F. Gross, B. S. Chandrasekar, D. Einzel, P. J. Hirschfeld, K.
Andres, H. R. Ott, Z. Fisk, J. Smith, and J. Beuers, Z. Phys.
B 64, 175 (1986).

26p, J. Hirschfeld, P. Wélfle, and D. Einzel, Phys. Rev. B 37, 83
(1988).

2TM. Prohammer and J. P. Carbotte, Phys. Rev. B 43, 5370
(1991).

28M. Prohammer and J. P. Cartotte, Phys. Rev. B 42, 2032
(1990).

29A. Perez-Gonzalez and J. P. Carbotte, Phys. Rev. B 45, 9894
(1992).

30T. Schneider and M. P. Srensen, Z. Phys. B 80, 331 (1990).

3IR, Zeyher and G. Zwicknagl, Solid State Commun. 66, 617
(1988); Z. Phys. B 78, 175 (1990).

32B. Friedl, C. Thomsen, and M. Cardona, Phys. Rev. Lett. 65,
915 (1990).

3E. Altendorf, J. Chrzanowski, and J. C. Irwin, Physica C 175,
47 (1991).

34F. Marsiglio, R. Akis, and J. P. Carbotte, Phys. Rev. B 45,
9865 (1992).

35E. J. Nicol, C. Jiang, and J. P. Carbotte, Phys. Chem. Solids
(to be published).

36C. Jiang and J. P. Carbotte, Phys. Rev. B 45, 10670 (1992).

37p. Arberg, M. Mansor, and J. P. Carbotte, Solid State Com-
mun. 86, 671 (1993).

38W. N. Hardy, D. A. Bonn, D. C. Morgan, Ruixing Liang, and
Kuan Zhang, Phys. Rev. Lett. 70, 3999 (1993).



